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We have investigated the performance of five well known scoring functions in predicting the binding affinities of 
a diverse set of 205 protein–ligand complexes with known experimental binding constants, and also on subsets of 
mutually similar complexes. We have found that the overall performance of the scoring functions on the diverse set 
is disappointing, with none of the functions achieving r2 values above 0.32 on the whole dataset. Performance on 
the subsets was mixed, with four of the five functions predicting fairly well the binding affinities of 35 proteinases, 
but none of the functions producing any useful correlation on a set of 38 aspartic proteinases. We consider two 
algorithms for producing consensus scoring functions, one based on a linear combination of scores from the five 
individual functions and the other on averaging the rankings produced by the five functions. We find that both 
algorithms produce consensus functions that generally perform slightly better than the best individual scoring 
function on a given dataset.

Introduction
The development of scoring functions to accurately predict 
experimental binding free energies for protein–ligand complexes 
is currently a major challenge in structure-based drug design. 
Virtual screening of large chemical databases often involves 
pre-filters such as druglikeness, followed by docking of 
potential ligands into specific known target receptor sites.1–4 
Docking programs search for viable conformations of ligands 
to reside in target receptor sites and a scoring function, often 
different from that used within the docking algorithm, ranks 
the docked conformations in terms of the quality of the fit 
between the ligand and receptor. As well as ranking different 
docked ‘poses’ of a single complex, the scoring function should 
ideally also be able to make predictions of binding affinity, 
which allows different candidate molecules to be ranked in 
terms of their predicted binding to a given target. The ability of 
docking programs to accurately predict protein–ligand complex 
geometries has significantly improved in recent years,5 so it is 
reasonable to expect that the best methods will increasingly 
give correctly docked solutions. However, predicting binding 
affinities is a different problem. We expect that improvements in 
the scoring functions will be crucial in addressing this.

The formation of a protein–ligand complex involves the 
steric fit and physicochemical interactions between the two 
molecules, conformational changes, and changes in interaction 
with solvent. Methods of evaluating the associated free energy 
change generally use potential functions, either empirical 
or knowledge-based, specifically designed for this purpose.6 
Typically, the experimental Kd values are treated as givens 
and little or no attention is paid to the various experimental 
methods, including displacement of different ligands, by which 
they have been measured.

Empirical scoring functions estimate the binding free 
energy of a protein–ligand complex by partitioning it into 
a sum of terms identified with various physically distinct 
contributions.7–11 These terms are typically identified with 
concepts such as hydrogen bonding, van der Waals and 
hydrophobic contacts, and with specific identifiable entropic 
contributions such as frozen rotations and solvation entropy.

Knowledge-based methods take a different approach, deriving 
energy-like functions by considering the distributions of inter-
atomic distances from experimental protein–ligand complex 
structures. These distributions are converted into energy-like 
functions by assuming Boltzmann-like energetics,12–16 the process 
being carried out for each pair of atom types. When a given test 
structure is assessed, features common in the database score 
favourably, and less frequent interactions score less favourably. 
The overall score indicates how much a structure ‘resembles’ 
real protein–ligand complexes. Importantly, this approach 
requires only structural, and not binding, data to derive the 
parameters. Knowledge-based methods have been shown to give 
useful correlations between experimental and calculated binding 
energies.12,15,16 The topology and connectivity of molecules makes 
it very hard to assess how much independent information the 
ensemble of interatomic distances represents; clearly the positions 
of covalently bonded neighbouring atoms are correlated. Thus 
an additional empirical parameter, calibrating the knowledge-
based ‘energy’ against binding energies, should greatly improve 
the accuracy of the predictions in absolute terms. For BLEEP, 
this has the effect of dividing the raw energies, as calculated by 
the original methodology,14,15 by a factor of 11.948.

Empirical scoring functions make the assumption that the 
energy contribution from each type of interaction present in 
the complex can be summed to give the free energy change of 
binding. The empirical scoring function used in DOCK17–20 
ignores solvation, conformation and entropic effects and uses 
molecular mechanics to estimate the binding energy. The lack 
of entropic and conformational effects means that DOCK may 
be expected to give relatively poor correlations for diverse sets 
of complexes. The ChemScore scoring function, which is also 
empirical in nature, uses lipophilic interactions, metal–ligand 
binding, hydrogen bonding and ligand flexibility loss to calculate 
binding energy.21 The empirical scoring function used in the 
docking program GOLD models the hydrogen bond interactions 
in the protein–ligand complex, including their directionality, van 
der Waals contacts between protein and ligand, and also the 
ligand’s conformational energy. The GOLD scoring function 
performs well in cases with predominately polar interactions, 
but poorly for primarily hydrophobic cavities with few polar 
interactions.22 Both the DOCK and GOLD functions were 
designed for accurate docking rather than affinity prediction.

In a study of four scoring functions using FlexX as the 
docking program, Stahl and Rarey5 suggested that some 
functions are more suited for the evaluation of specific types 

† This is one of a number of contributions on the theme of molecular 
informatics, published to coincide with the RSC Symposium “New 
Horizons in Molecular Informatics”, December 7th 2004, Cambridge 
UK.
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of targets, such as lipophilic and polar receptors. Based on 
the complex being docked, combinations of two from the 
four possible scoring functions showed significantly improved 
results in virtual screening. Their results support the idea that, 
as yet, no single scoring function is able to work for every 
protein–ligand complex. Thus, consensus scoring, where the 
results generated from several different scoring functions are 
combined, has recently been more widely used to improve the 
hit rates from docking virtual libraries into target receptor sites. 
A number of different approaches to consensus scoring are 
possible, of which averaging the scores from different functions 
is one. In essence, the mean of the binding energies predicted 
by a number of scoring functions is likely to be closer to the 
true value than is the energy from a single function. Scoring a 
molecule according to the best value from any of the functions 
is another possible consensus approach; this would aggregate 
the top few hits from each function into the final list. The study 
of Wang et al. of  eleven scoring functions reported that only 
four gave rank correlation coefficients (Rs) better than 0.5 with 
experimental binding affinities.23 Bissantz et al.’s evaluation of 
seven scoring functions showed that they were unable to predict 
absolute binding free energies.24 Charifson et al. reported that a 
consensus approach gave a significant reduction in the number 
of false positive results, compared with individual scoring 
functions.25 Some methods have included a feedback loop where 
the results from the scoring function are used to encourage 
the docking method to alter the conformation of the ligand 
molecule in the receptor site, thus improving the subsequent 
scoring function results.26

Here we compare the results of five different scoring functions 
in calculating binding affinities for 205 protein–ligand complexes 
with known three-dimensional structures,27 and also for various 
subsets of mutually similar complexes. We used the knowledge-
based methods PMF16,28 and BLEEP14,15 and the empirical 
scoring functions of GOLD,22 DOCK17 and ChemScore.21,29 
All these knowledge-based and empirical scoring functions 
have been used in molecular design, but no comparative study 
of their performance on a single test set has yet been published. 
We also define and examine the performance of two consensus 
functions, each based on these five scoring functions.

Results
We applied the five scoring functions to a test set totalling 205 
different protein–ligand complexes from the Protein Databank 
(PDB). We also used a number of subsets of these data: five 
functionally-based subsets (Table 1); subsets based on Chem-
Score training and test sets21 (Table 2); and the BLEEP test set15 
(Table 3).

Scores were calculated using BLEEP, PMF, GOLD, DOCK 
and ChemScore and compared with the experimental log Kd 
values. We calculated r2 and Rs between the scores given by the 
five scoring functions and the experimentally measured log Kd 
values for the 205 protein–ligand complexes in the dataset 
(Table 1 and Fig. 1). Of the five scoring functions evaluated, 
BLEEP gave the best agreement between its calculated binding 
free energy and experimental log Kd values, with Rs = 0.59. 
GOLD, ChemScore and DOCK had mutually similar Rs values 
of 0.50, 0.44 and 0.43 respectively, while PMF gave an Rs value 
of 0.32. All five scoring functions gave modest r2 values, the 
highest being the 0.32 given by BLEEP.

We identified five characteristic subsets of our data (see 
Table 1), each of which represents a series of related protein–
ligand complexes; these are similar, but not identical, to those 
used by Ishchenko and Shakhnovich.13 Our serine proteinase 
subset contains 35 complexes, for which BLEEP and DOCK 
scores gave a good correlation with experimental log Kd, with 
r2 values of 0.74 and 0.69 together with Rs values of 0.82 and 
0.83 respectively. PMF and GOLD performed reasonably 
well, but ChemScore was not able to reproduce the trend in 
binding affinities. For our sample of 25 metalloproteinase T
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complexes, BLEEP gave an r2 of  0.44 and an Rs value of 0.72. 
The ChemScore, PMF, GOLD and DOCK scoring functions 
performed poorly in predicting the binding energies for this 
subset. All five methods gave Rs values between 0.42 and 0.54 
for 18 carbonic anhydrase II complexes. For the subset of 30 
sugar binding proteins, four of the scoring functions had a 
poor correlation with experimental log Kd, though BLEEP did 
reasonably well with an Rs value of 0.76. For the final subset 
of 38 aspartic proteinase complexes, the situation was very 
disappointing, with none of the methods producing any kind of 
useful correlation. The r2 value of 0.25 for PMF actually came 
from a negative correlation coefficient, r = −0.50.

A Naïve BLEEP method, where there was no human 
intervention to fix apparent errors, produced essentially 
identical results to BLEEP (any difference being less than 
0.1 kJ mol−1 or 0.0175 log K units) for 171 of the 205 complexes, 
slightly different results (by between 0.1 and 1 kJ mol−1) for five 
complexes, moderately different results (by between 1 and 10 kJ 
mol−1) for eight complexes, and very different results (by more 
than 10 kJ mol−1) in only two cases. Naïve BLEEP failed to 
produce a result for 19 complexes. The Rs and r2 values between 
Naïve BLEEP and experiment over the 186 complexes were 
virtually identical to those of BLEEP. These results suggest that 

BLEEP would fail in about 10% of cases when used as a ‘black 
box’, but reassure us that it would not produce a significant 
number of erroneous but credible scores.

Table 2 gives the correlation coefficients for the various Chem-
Score test sets. The most clear-cut result here is that ChemScore 
performs much better on its own ‘Test set 1’ 21 than it does on 
the remainder of our dataset. Table 3 shows that the BLEEP 
test set15 is a relatively ‘easy’ set, with BLEEP, PMF, GOLD and 
DOCK all performing much better on these 90 complexes than 
on the remaining 115, although ChemScore performs equally 
well on the two sets.

We now discuss the results obtained using two consensus 
methods, Linear Combination of scoring functions (LC) and 
Average Rank (AR), each of which is described in the Methods 
section. Table 4 shows more details of  the performance of the 
LC function when the dataset was partitioned into training 
and test sets of  100 and 105 complexes, respectively. LC only 
modestly outperformed the best of  the individual functions 
(BLEEP) in this test, with Rs = 0.62 ± 0.02 and r2 = 0.36 ± 0.02. 
The weights wi are not reliable indicators of the quality of the 
individual scoring functions, since some pairs of functions are 
highly correlated and hence contribute similar information to 
LC. Looking at our data as a whole (Tables 1, 3 and 4), the 

Fig. 1 Experimental log Kd values for 205 complexes plotted against the corresponding scores calculated by (a) BLEEP; (b) PMF; (c) GOLD; 
(d) DOCK; (e) ChemScore.
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consensus methods AR and LC both generally performed 
similarly to the best individual scoring function on a given 
dataset. LC performed poorly on the carbonic anhydrase II set 
due to a single outlying score for one function (PDB entry 1okm 
with DOCK), which led to a large RMS error whenever this was 
found in the small test set of  nine complexes. The RMS errors 
of the predicted Kd values from Table 4 were 2.64 ± 0.04 for LC, 
3.00 ± 0.04 for BLEEP and 2.49 ± 0.05 log Kd units for AR. The 
relative success of AR on this measure is probably due to the 
averaging inherent in AR diminishing the effect of outlier scores 
from individual functions.

Discussion
The inescapable conclusion from these results is that the 
problem of accurately predicting the binding energies of a large 
and diverse set of  protein–ligand complexes is an extremely 
difficult one. None of the scoring functions tested here achieved 
r2 values above 0.32 when tested on the full 205 complex dataset. 
This is a modest level of performance, although we should note 
in defence of the GOLD and DOCK functions that they were 
designed to identify the correct geometries of bound complexes 
and were not intended to be applied to the problem of affinity 
prediction.

In practice, however, it is rarely necessary to deal with such 
a diverse set of  complexes. It is more likely that the scoring 
functions will be used to evaluate either different docked ‘poses’ 
of  a single ligand in a given receptor, or comparative binding 
energies of a series of (possibly related) ligands in a given 
binding site. Predicting the binding affinities for a set of similar 
ligands binding related proteins is a commonly used way of 
validating scoring functions, as the structural data are available 
in the public domain in the PDB.38,39 This represented the main 
way of testing both PMF16 and ChemScore,21 and was one of a 
number of tests used to validate BLEEP.15 There is substantial 
overlap between the test sets used in the original PMF16 and 
ChemScore21 publications, some of which have formed the basis 
of the test sets27 in the present study (see Tables 1 and 2). Such 
problems, involving families of related complexes, are expected 
to be substantially more tractable than tackling a highly 
diverse set of complexes, but harder than limiting the test set to 
complexes of a single protein.

The diverse set problem is also quite different from virtual 
screening, that is the identification of a small number of 
hits amongst many non-binders. In a diverse set consisting 
only of binders, binding energy is likely to correlate with 
molecular weight.30 Scoring functions typically sum atom–atom 
contributions, hence tending to give better scores to larger 
molecules,31–33 and this non-specific effect will contribute 
to the apparent success of the function. Virtual screening, 
however, requires the identification of specific favourable and 
unfavourable interactions and, in a dataset with many non-

binders, molecular weight is not a good predictor of affinity. 
The approach where a diverse library is computationally docked 
into a variety of targets is reasonable from a virtual screening 
point of view, when only a general indication of likely binding is 
required, but will not accurately predict affinities.

The headline figures for the correlation coefficient given here 
seem less impressive than in previous work.15 This is partly due 
to the choice of dataset. Six outliers were excluded from that 
previous analysis of BLEEP, which raised the r2 value from 0.40 
to 0.55. Using the current version of BLEEP, the corresponding 
r2 values are 0.41 with outliers present and 0.54 without them. 
Also, as discussed above, the BLEEP test set seems to have 
been ‘easier’ than the current set (Table 3). The outliers seem 
to be potential-specific, so the six ‘worst case’ complexes for 
BLEEP degrade its performance much more than they do the 
performance of other scoring functions (compare the first and 
third rows of Table 3). The effects of selective outlier removal are 
probably part of the reason why a given potential often performs 
better on the test set from its own publication than on other, 
apparently similar, sets.

It seems to us that the comparison of scoring functions would 
be greatly facilitated if  the community were to adopt standard 
test sets on which to carry out such experiments. Separate sets 
would be required to test the performance of these functions on 
different kinds of problem, such as virtual screening, affinity 
prediction in diverse sets, affinity prediction in homologous sets, 
and docking. For our part, we have made available the experi-
mental binding affinity data used in this work.27 We note also 
that Wang et al. have recently made available a database of 1359 
experimental protein–ligand binding affinities.34

We have found substantial differences amongst our five 
characteristic subsets. The serine proteinase subset is ‘easiest’, 
with four of the five scoring functions giving Rs values above 
0.6. In contrast, none of these functions was able to find 
meaningful correlations for the aspartic proteinases, where the 
protocol employed here takes no account of the role played 
by water in the active site. The other three subsets were of 
intermediate difficulty. It seems to us that the current state of 
scoring functions is adequate for only some sets of complexes. In 
other cases, it may be necessary to design specific functions for 
specific classes of target, for instance as Verkhivker and Rejto35 
created a function for HIV proteinase complexes.

Our results also suggest that consensus scoring performs 
somewhat better than any individual scoring function, and is 
inherently less prone to the effects of potential-specific outliers. 
We recognise that the use of such methods does significantly 
increase the computational effort required and hence may not 
always seem worthwhile in CPU-intensive and relatively low 
accuracy applications such as virtual screening. Nonetheless, 
using consensus scoring based on a plurality of functions is 
likely to increase the diversity of hits, as it has for chemical 
structure searches.36

Table 4 Scoring and consensus dataa for ten partitionings into {100 training}    +    {105 test}

 Rs r2 RMS r w

BLEEP 0.60 ± 0.02 0.33 ± 0.02 3.00 ± 0.04 0.90 ± 0.03 0.42 ± 0.03
PMF 0.29 ± 0.02 0.14 ± 0.01 4.16 ± 0.07 0.057 ± 0.004 0.34 ± 0.02
GOLD 0.48 ± 0.02 0.19 ± 0.01 4.93 ± 0.06 0.016 ± 0.002 −0.07 ± 0.02
DOCK 0.42 ± 0.02 0.21 ± 0.02 3.57 ± 0.04 0.046 ± 0.002 0.06 ± 0.02
ChemScore 0.43 ± 0.02 0.18 ± 0.01 3.65 ± 0.06 1.39 ± 0.06 0.39 ± 0.02

AR 0.56 ± 0.02 0.33 ± 0.02 2.49 ± 0.05

LC 0.62 ± 0.02 0.36 ± 0.02 2.64 ± 0.04

a Values for r and w were calculated for each scoring function over the training set of  100 complexes. Rs, r2 and RMS error (in log10 Kd units) were 
calculated over the test set of 105 complexes. The values quoted are the means over 10 randomised partitionings of the total dataset, with the standard 
errors of the mean quoted after the ± symbol. In the current version of BLEEP, energies are now pre-scaled by a factor of (1/11.948) compared with 
the methodology published14 in 1999, in order to bring them more closely into line with experimental values. Hence the r value calculated here for 
BLEEP is close to 1. The AR predicted log Kd values used the mean and standard deviation of the distribution of the experimental values in the training 
set and the ranks of complexes in the test set.
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Methods
Preparation of the dataset

The test set used in this study consists of  205 protein–ligand 
complexes27 with experimentally measured Kd values, which 
have been assembled from scoring function and/or docking 
evaluation studies.5,7,23,25,37 Their dissociation constants range 
from −1.49 to −13.97 in log Kd units, spanning over 12 orders 
of magnitude and having been measured by a variety of 
experimental methods. All ligands bind non-covalently to the 
proteins. The 205 complexes include the 90 on which BLEEP 
was originally tested15 and the six outliers that were excluded 
from that analysis (but only two of the 188 complexes from 
which BLEEP was derived14), 78 from the ChemScore training 
sets and 30 from the ChemScore test sets.21

Coordinates for the protein–ligand complexes were 
downloaded from the Protein Databank (PDB).38,39 For BLEEP, 
the PDB file provided both protein and ligand molecules, which 
were automatically identified by the software. For PMF, GOLD, 
DOCK and ChemScore, the protein and ligand molecules were 
extracted from the ATOM and HETATM records in the PDB 
file, and saved in MOL2 format. Where metal ions were present 
in the protein, the standard metal parameter file was used and 
the atom types of the metals verified. For multimeric proteins 
with multiple active sites, a single instance of the ligand was 
extracted for scoring to maintain consistency with the BLEEP 
methodology. Hydrogen atoms were added to both protein 
and ligand molecules using Sybyl®,40 except for BLEEP where 
only polar hydrogens were added using HBPLUS.41 The 
Gasteiger method was used to assign charges for the Sybyl® 
implementation of DOCK and protonation states were chosen 
as those expected at pH 7, given the pKa values of the ionisable 
groups. The atom types and bond orders of the protein and 
ligand molecules were confirmed manually.

BLEEP is stand-alone software available from the Unilever 
Centre for Molecular Science Informatics. The CScore consensus 
scoring module within Sybyl® 6.9 40 generates results using 
the PMF, GOLD, DOCK, FSCORE and ChemScore scoring 
functions. We made no use of the FSCORE or CScore functions. 
This work was carried out using an SGI ORIGIN R6000 twin 
processor workstation.

Scoring functions

The reader is referred to the original papers for full details of 
the scoring functions used. These include two knowledge-based 
functions, BLEEP14,15 and PMF,16,28 together with the empirical 
functions from the GOLD22 and DOCK20 docking protocols, 
and also the empirical ChemScore21 function. BLEEP, PMF and 
ChemScore are designed explicitly to predict binding affinities, 
while the GOLD and DOCK functions are not; these functions 
are intended to give accurate docked geometries. All of  the 
scoring functions are available commercially with the exception 
of BLEEP, which academic users can obtain from us without 
charge.

In the few cases where BLEEP failed to produce a result, or 
where its result seemed surprising, we have investigated on a 
case-by-case basis and fixed any errors that occurred, most often 
in the automatic assignment of atom types. In order to illustrate 
the use of BLEEP as a black box, which is a better model of how 
high throughput screening would work, we have also recorded 
a set of ‘Naïve BLEEP’ results, where no attempt is made to 
fix errors and failed runs are discarded. For the other scoring 
functions, we have investigated any scores that seemed suspicious 
and fixed any obvious errors. Where a positive (repulsive) score 
has persisted, it has been treated as zero in our analyses.

Consensus by linear combination of scoring functions (LC)

We have investigated a consensus scoring function based on the 
linear combination of scaled results from the existing functions. 

We call this LC (Linear Combination). First, we scaled each of 
the original five scoring functions Fi by a factor ri, designed to 
minimise the root mean square error of the predicted log Kd 
values. This calibrated the individual scoring functions against 
one another. We then used multiple linear regression to minimise 
the root mean square error, over a suitable training set, of  the 
function

                                        LC = Riwi(riFi)                                   (1)

where the wi are weights to be optimised. The use of the scaling 
factors ri allows meaningful direct comparison of the weights 
assigned to the individual functions Fi within the overall LC. 
These weights measure the contributions to LC, but not the 
performance, of the functions Fi.

The LC procedure was applied by randomly splitting the 205 
complexes into a training set of  100 and a test set of  105. The 
process was carried out ten times, with different random parti-
tionings into training and test sets, the function being trained 
afresh over each training set. When applied to smaller datasets, 
LC was retrained on (approximately) half  of the set and tested 
on the other half. This process was carried out, as before, on ten 
randomised partitionings of each set.

Consensus by average rank (AR)

One simple way to obtain a consensus score is to rank all 
complexes in the relevant test set according to each scoring 
function, and then to use the average of these ranks as a measure 
of the ligand’s predicted affinity. In this implementation, which 
we call AR (Average Rank), each complex c is ranked from 1 
(least affinity) upwards using each scoring function i (this index 
ranging over the five scoring functions), with ranks Rc

i. The AR 
function is then defined as

                                    AR( ) / .c Ri
c

i

= −
=
∑

1

5

5                                (2)

This definition ensures that the strongest predicted affinities 
are associated with the largest negative AR values. AR can be 
used to predict log Kd by mapping the AR scores onto a normal 
distribution with the same mean and standard deviation as the 
experimental log Kd values in the training set. We chose to pursue 
AR, having found in preliminary studies that it outperformed 
the alternative of taking the best rank.

Statistical measures

Evaluating the correlation between calculated binding energies 
and experimental values provides an indication of the perfor-
mance of a scoring function and of how well these values can 
predict the binding affinities of protein–ligand complexes. The 
Pearson’s product moment correlation coefficient, denoted by r, 
is a measure of the linear association between two variables, here 
the experimental log Kd and the score or energy calculated by a 
particular scoring function. The square of the product moment 
correlation coefficient, denoted by r2, is a commonly used 
measure of correlation, giving a value of between 0 and 1. The 
correlation between experimental log Kd and calculated binding 
energy does not, however, have to be linear, and Spearman’s rank 
correlation coefficient (Rs) is an accurate quantitative measure 
of the relationship between two sets of rankings.

Conclusions
The scoring functions tested here fared only moderately well in 
predicting the binding affinities of a diverse set of 205 protein–
ligand complexes. Their performance on subsets of mutually 
similar complexes was very mixed. Several of  the scoring 
functions did well on the set of 35 serine proteinases, but all of 
them failed to make useful predictions for a set of  38 aspartic 
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proteinases. This suggests that there is still plenty of room for 
improvement in scoring functions. One potentially fruitful 
approach would be to base future knowledge-based functions 
solely on the structures of high affinity complexes. It is likely 
that scoring functions focused on specific classes of protein and 
ligand will sometimes be useful.

We have examined two different consensus scoring methods. 
One is based on averaging the ranks given by the five functions 
and the other on a linear combination of their scores. Each of 
these generally performed as well as, or slightly better than, the 
best individual scoring function on any given dataset.

Our results suggest that different test datasets vary consider-
ably in difficulty, and this makes it hard to compare the results of 
different studies in the literature. We believe that the community 
should adopt standard test datasets for affinity prediction, for 
docking and for virtual screening.
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